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Forests don’t fit into greenhouses ﬁ
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Principlies underlying gap models ﬁ
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Forest succession models: approach AA

Concept of small-scale mosaic of
successional patches (Gleason,
Botkin, Shugart):

so-called ,Gap models®

Quantitative description of tree
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Sensitive to climatic factors

Concept underlying most current
dynamic models of (potentially)
uneven-aged stands

Bugmann (2001), Clim Change

The FORCLIM model ﬁ
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Simulated potential natural vegetation QA
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Challenges JVN

If we want to better understand forest succession and make
‘predictions’ of the future dynamics of ‘real’ forests:

How to further develop dynamic models?
* What observations to make (or: use)?

* Which experiments to conduct?

» Relationship between data and models?

Here:

Evaluate (some of) these questions using the case of forest
gap models in Europe and in the Pacific Northwest of North
America

Powerful data sources... to be unlocked... éA

* Long-term Growth-and-Yield plots » Network of Swiss forest
(Swiss Federal Res. Institute WSL) reserves (ETH Zurich, WSL)
— 50+ stands — 48 reserves
— Partly dating back to 19th century — Dating back to 1950s
— Inventories every 5-15 yrs — Inventories every 5-15 yrs
— Mostly (strongly) managed stands — Unmanaged for 50+ yrs
— Tree positions known — Tree positions unknown
— Small, uniform plots — Small permanent plots
— Full cruises on larger areas
(compartments)
http://www.wsl.ch/forschung/forschungsunits/ http://www.waldreservate.ch

walddynamik/waldwirtschaft
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Rigorous model tests ¢ awrwese

W Mixed A
A Conifers

Eight Growth-And-Yield sites
of WSL, Switzerland

01530 60 km
[

Initialized with single-tree o %
data from first inventory (1890-1933)

Settings of the management module:

- ,Specific*:
Interventions in exactly those years in which they occurred in
reality, with recorded intensity and concerning the recorded
species

— ,Generic*
Use of average intensity and average intervals between
interventions, affecting all species similarly
Rasche et al. (2011), J Appl Ecol

...sometimes it‘s impressive ﬁ
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Results: Sometimes it‘s so-so...

Basal area
specific management

60

40 50
{ ®
\
5
-
N/ha

Basal area [m"2/hal
20 30

10

5
»
>

Basal area [m"2/ha]
10

10 20 30 40 50 60 70

50

specific management

Diameter distribution

-

generic management

—_—
0 10 20 30 40 50 60 70
[ S S S N— —
|

100 150 200

50

Time

~=- Empirical data -a=- Model data

DBH class (4 cm)

tick marks = class-midpoints

Empirical data  e== Model data

Results: Diameter distributions

Aarburg
Galmiz
Horgen
Hospental
Morissen
St. Moritz
Winterthur

Zofingen

»Specific“ management

p value
0.00
0.28
0.01
0.53
0.46
0.31
0.03
0.30

test stats
0.57
0.29
0.48
0.24
0.24
0.29
0.43
0.29

»Generic“ management

p value
0.00
0.28
0.01
0.50
0.43
1.00
0.03
0.01

test stats
0.57
0.29
0.48
0.24
0.24
0.05
0.43
0.52

Kolmogorov-Smirnoff test of the cumulative frequency distributions
at the end of the simulation (i.e., after 70-103 yrs)

Rasche et al.

(2011), J Appl Ecol

Rasche et al. (2011), J Appl Ecol



Model sensitivity to tree mortality QA Overview JVN
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* Temporal and spatial scales and their implications
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 Derived from tree-rings (TRM) vs. from inventory data (IM)
» Mortality occurs when threshold probability is exceeded
(“threshold”) vs. random number (randNr)
. . «=g@ Empirical data IM,randNr == TRM,randNr
+ Old, “data-free” formulation (= ‘ForClim 3.0°’) plus = ForClim3.0 IM threshold == TRM,threshold
4 combinations of
data source (TRM/IM) and threshold/randNr
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Wunder et al., in prep.; Bircher et al. (2015), Ecol. Applications



...and making extrapolations ,ALA
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Inventory-based mortality function (Bayes) %

Variables:

*Diameter at breast height (DBH)

*DBH?

*Logarithmic annual degree day sum (logDD)

- Not free for calibration

*Relative basal area increment:

4 classes («very slow», «slow», «fast», «very fasty») [+]

- Converted to continuous variable

*Shade tolerance: 3 classes («high», «intermediate», «low»)

Growth:
Diameter increment

Bircher et al. (2015), in prep.

Inventory-based mortality function (orig.) A_A

-> Annual survival probability of each individual tree

Data source and method:

*Selection of Swiss National Forest Inventory plots (1985-95 /
1995-2005)

Logistic regression model

Predictor variables:

Diameter at breast height (DBH) [+], DBH?[-]

*Annual degree day sum (logDD) [-]

*Relative basal area increment

(4 classes: «very slow», «slowy, «fast», «very fasty») [+]
*Shade tolerance

(3 classes: «high», «intermediate», «low») [-]

Wunder et al. (2015), in prep.

Swiss forest reserve network ﬁ

48 sites; permanent plots (~300):

* No management for decades
to centuries

» Individual tree data

A Permanent plats
A calibration stes

.- Validation sites

Calibration sites (9):

Inventory period 235 yr
# + Main tree species
* No disturbance

Validation sites (23):
* Inventory period =235 yr
* No disturbance

Bircher et al. (2015), in prep.



Results: Calibration

Log-likelihoods Stem numbers Basal area increment
ForClim v3.0 IM_Original IM_Bayes ForClim v3.0 IM_Original IM_Bayes
(maxLL) (maxLL)

Adenberg_03 -22.9 -22.6 -22.9 7.2 -13.1 -6.9
BoisdeChenes_02 -16.8 -16.2 -15.8 -1.9 -0.5 -0.8
Fuerstenhalde_01 -13.8 -14.8 -15.0 -3.3 -32.5 -4.6
Girstel_04 -30.2 -27.8 -27.3 -17.3 -14.7 -16.2
Leihubelwald_02 -16.9 -14.3 -14.3 -21.6 -4.3 -11.7
Nationalpark_07 -10.5 -8.8 -8.9 22 -6.3 5.7
St.Jean_01 -23.1 -19.9 -19.4 -24.9 -3.9 -2.8
TaricheHauteCote_04 -30.4 -23.8 -24.8 -14.6 -17.4 9.4
VormStein_02 -21.6 -17.5 -17.3 -29.8 -11.7 -13.3

f f

Empirical, calibrated mortality model performs better
than original algorithm

But: stem number vs. basal area increment

Bircher et al. (2015), in prep.
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...but how about long-term PNV?
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Bugmann & Solomon (2000), Ecol Appl; cf. Didion et al. (2009), CJFR



BA [m2/ha]

...but how about long-term PNV?
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Bircher (2015), PhD Thesis

Temporal scaling issues
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Let’s look at things in space then...

. @ o ® w

“The biggest abstraction you can make is...
... to take a measurement” (T. Allen)

50 years is very short for forest dynamics

Fitting a model to a specific period in time may be problematic and
hamper its predictive capability

Calibration must be restricted to a few parameters only — this may lead to
“compensation in fitted parameters for erroneous, non-fitted parameters”

Perhaps it's better to be

Picea abies
o (5 I

W Abies amabilis Pscudotsuga menziesii(m)

A\

JIN

Abies grandis B Thuja plicata

m]

B Picea sitchensis

4

Pinus ponderosa

ForClim V2.9, Pacific Northwest of the United States

Tsuga Tsuga mertensiana
i _ heterophylla |

Biomass (Mg/ha)

approximately right
than to be
exactly wrong

0 =

T e Abundance
Distribution = f( DD, minTw, Dr)

= f( DD, minTw, Dr; comp )

Sykes et al. (1996), J Biogeogr Bugmann & Solomon (2000), Ecol App!



Thermal latitudinal distance from treeline (K)
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Maybe the two worlds match?
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“Dynamic vegetation
models should be used to
[study species range
dynamics] and can improve
our understanding of the
factors that influence
species range expansions
and contractions.”

Snell et al. (2014), Ecography
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Randin et al. (2014), Glob Ecol Biogeogr

Distribution-wide applicability... or not?
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‘Local’ parameterization
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Gutierrez et al. (2015), submitted

Distribution-wide applicability... or not?
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Performance of latest model version (yr 2014) in PNW...

. with ‘local’ parameterization

Picea sitchensis

Qutside
- Inside

35 40 45 50 55 60

T T T T
-160 -150 -140 -130 -120 -110

Overview

. with ‘global’ parameterization

35 40 45 50 55 60

Picea sitchensis

e

Outside
m Inside

T T T T
-160 -150 -140 -130 -120 -110

Gutierrez et al. (2015), submitted
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Spatial scaling issues éA

A species is a species is a species... ?
Inaccurate parameterization... (climate data, distribution data) ?

Large-scale bioclimatic constraints are not ‘fine’ enough for small-scale
applications... ?

We simply don’t understand well enough the biophysical limits of (tree)
species... ?

Or a combination thereof... ?

NB: If we want to do better, we need to do better for 30/72/20/ 18
species simultaneously ( EUR / ENA/PNW /NEC)

Conclusions Al

Dynamic models are important tools for assessing possible future
trajectories of forest stands

Succession models are remarkably ’realistic’ (e.g., simulations of PNV)

They have become quite accurate in tracking measured ‘long-term’ data
of forest structure and composition (Growth-And-Yield; Reserves)

Data-model fusion is highly promising

Yet, calibration to specific conditions (in time and space) leads to dramatic
deterioration of performance when scaling is attempted

Need to disentangle the various explanations that may underlie the
apparent need for scale-dependent parameterizations

The good news is: we don’t run out of work! ©



