

Modeling long-term forest dynamics: Interfacing succession models with empirical data leads to surprises

Harald Bugmann, Nicolas Bircher, Maxime Cailleret & Alvaro Gutierrez

Forest Ecology, ETH Zürich, Switzerland

- Temporal and spatial scales and their implications
- · Forest succession models and their successes
- · From qualitative to quantitative model tests
- Moving to data-driven models
- · The paradox: temporal and spatial scales mess up things
- Possible reasons for the paradox
- Conclusions

Forests don't fit into greenhouses

Levins (1966), Odenbaugh (2002)

Overview

- Temporal and spatial scales and their implications
- · Forest succession models and their successes
- · From qualitative to quantitative model tests
- · Moving to data-driven models
- The paradox: temporal and spatial scales mess up things
- Possible reasons for the paradox
- Conclusions

Moore (1989), Ecol Modelling

Forest succession models: approach

- Concept of small-scale mosaic of successional patches (Gleason, Botkin, Shugart): so-called "Gap models"
- Quantitative description of tree population dynamics:
 - Establishment
 Growth
 - Glowin
 - Mortality
- Sensitive to climatic factors
- Concept underlying most current dynamic models of (potentially) uneven-aged stands

Bugmann (2001), Clim Change

Simulated potential natural vegetation

Bugmann & Solomon (2000), Ecol Appl; cf. Didion et al. (2009), CJFR

Overview

- · Temporal and spatial scales and their implications
- · Forest succession models and their successes
- · From qualitative to quantitative model tests
- · Moving to data-driven models
- The paradox: temporal and spatial scales mess up things
- Possible reasons for the paradox
- Conclusions

If we want to **better understand** forest succession and **make** 'predictions' of the future dynamics of 'real' forests:

- · How to further develop dynamic models?
- · What observations to make (or: use)?
- · Which experiments to conduct?
- · Relationship between data and models?

Here:

Evaluate (some of) these questions using the case of forest gap models in Europe and in the Pacific Northwest of North America

Powerful data sources... to be unlocked...

- Long-term Growth-and-Yield plots (Swiss Federal Res. Institute WSL)
 - 50+ stands
 - Partly dating back to 19th century
 - Inventories every 5-15 yrs
 - Mostly (strongly) managed stands
 - Tree positions known
 - Small, uniform plots
- http://www.wsl.ch/forschung/forschungsunits/ walddynamik/waldwirtschaft

- Network of Swiss forest reserves (ETH Zurich, WSL)
 - 48 reserves
 - Dating back to 1950s
 - Inventories every 5-15 yrs
 - Unmanaged for 50+ yrs
 - Tree positions unknown
 - Small permanent plots
 - Full cruises on larger areas (compartments)

http://www.waldreservate.ch

Rigorous model tests

- Eight Growth-And-Yield sites of WSL, Switzerland
- Initialized with single-tree data from first inventory (1890-1933)
- Settings of the management module:
 - "Specific":

Interventions in exactly those years in which they occurred in reality, with recorded intensity and concerning the recorded species

🖕 F. sylvatica

Quercus ssp.
 Mixed
 Conifers

– "Generic":

Use of average intensity and average intervals between interventions, affecting all species similarly

Rasche et al. (2011), J Appl Ecol

60 km

15 30

Results: Diameter distributions

--- Empirical data --- Model data

(2011), J Appl Ecol

- Empirical data - Model data

	"Specific" management		"Generic" management	
	p value	test stats	p value	test stats
Aarburg	0.00	0.57	0.00	0.57
Galmiz	0.28	0.29	0.28	0.29
Horgen	0.01	0.48	0.01	0.48
Hospental	0.53	0.24	0.50	0.24
Morissen	0.46	0.24	0.43	0.24
St. Moritz	0.31	0.29	1.00	0.05
Winterthur	0.03	0.43	0.03	0.43
Zofingen	0.30	0.29	0.01	0.52

Kolmogorov-Smirnoff test of the cumulative frequency distributions at the end of the simulation (i.e., after 70-103 yrs)

Rasche et al. (2011), J Appl Ecol

Implementing empirical mortality models

- Derived from tree-rings (TRM) vs. from inventory data (IM)
- Mortality occurs when threshold probability is exceeded ("threshold") vs. random number (randNr)
- Old, "data-free" formulation (= 'ForClim 3.0') plus 4 combinations of data source (TRM/IM) and threshold/randNr

- Temporal and spatial scales and their implications
- · Forest succession models and their successes
- · From qualitative to quantitative model tests
- Moving to data-driven models
- · The paradox: temporal and spatial scales mess up things
- Possible reasons for the paradox
- Conclusions

Testing against "long-term" data...

Eng zond

...and making extrapolations

Inventory-based mortality function (Bayes)

Variables:

•Diameter at breast height (DBH)

•DBH²

•Logarithmic annual degree day sum (logDD)

→ Not free for calibration

•Relative basal area increment:

4 classes («very slow», «slow», «fast», «very fast») [+]

\rightarrow Converted to continuous variable

•Shade tolerance: 3 classes («high», «intermediate», «low»)

Growth: •Diameter increment

 \rightarrow Annual survival probability of each individual tree

Data source and method:

Selection of Swiss National Forest Inventory plots (1985-95 / 1995-2005)
Logistic regression model

Predictor variables:

- •Diameter at breast height (DBH) [+], DBH²[-]
- •Annual degree day sum (logDD) [-]
- •Relative basal area increment
- (4 classes: «very slow», «slow», «fast», «very fast») [+]
- •Shade tolerance
- (3 classes: «high», «intermediate», «low») [-]

Wunder et al. (2015), in prep.

Results: Calibration

Log-likelihoods	Stem numbers			Basal area increment		
	ForClim v3.0	IM_Original	IM_Bayes (maxLL)	ForClim v3.0	IM_Original	IM_Bayes (maxLL)
Adenberg_03	-22.9	-22.6	-22.9	-7.2	-13.1	-6.9
BoisdeChenes_02	-16.8	-16.2	-15.8	-1.9	-0.5	-0.8
Fuerstenhalde_01	-13.8	-14.8	-15.0	-3.3	-32.5	-4.6
Girstel_04	-30.2	-27.8	-27.3	-17.3	-14.7	-16.2
Leihubelwald_02	-16.9	-14.3	-14.3	-21.6	-4.3	-11.7
Nationalpark_07	-10.5	-8.8	-8.9	-2.2	-6.3	-5.7
St.Jean_01	-23.1	-19.9	-19.4	-24.9	-3.9	-2.8
TaricheHauteCote_04	-30.4	-23.8	-24.8	-14.6	-17.4	-9.4
VormStein_02	-21.6	-17.5	-17.3	-29.8	-11.7	-13.3
			1			1

- Empirical, calibrated mortality model performs better than original algorithm
- But: stem number vs. basal area increment Bircher et al. (2015), in prep.

Overview

- · Temporal and spatial scales and their implications
- · Forest succession models and their successes
- · From qualitative to quantitative model tests
- · Moving to data-driven models
- The paradox: temporal and spatial scales mess up things
- Possible reasons for the paradox
- Conclusions

Bircher et al. (2015), in prep.

Bugmann & Solomon (2000), Ecol Appl; cf. Didion et al. (2009), CJFR

Bircher (2015), PhD Thesis

Temporal scaling issues

- "The biggest abstraction you can make is... ... to take a measurement" (T. Allen)
- 50 years is *very* short for forest dynamics
- · Fitting a model to a specific period in time may be problematic and hamper its predictive capability
- · Calibration must be restricted to a few parameters only this may lead to "compensation in fitted parameters for erroneous, non-fitted parameters"
- · Perhaps it's better to be approximately right than to be exactly wrong

- Temporal and spatial scales and their implications
- · Forest succession models and their successes
- From gualitative to guantitative model tests
- · Moving to data-driven models
- The paradox: temporal and spatial scales mess up things
- Possible reasons for the paradox
- Conclusions

Overview

Maybe the two worlds match?

Randin et al. (2014), Glob Ecol Biogeogr

"Dynamic vegetation models should be used to [study species range dynamics] and can improve our understanding of the factors that influence species range expansions and contractions."

Snell et al. (2014), Ecography

Distribution-wide applicability... or not?

Performance of latest model version (yr 2014) in PNW...

Gutierrez et al. (2015), submitted

- · Temporal and spatial scales and their implications
- · Forest succession models and their successes
- · From qualitative to quantitative model tests
- Moving to data-driven models
- · The paradox: temporal and spatial scales mess up things
- Possible reasons for the paradox
- Conclusions

Gutierrez et al. (2015), submitted

Spatial scaling issues

- A species is a species is a species...?
- Inaccurate parameterization... (climate data, distribution data)?
- Large-scale bioclimatic constraints are not 'fine' enough for small-scale applications... ?
- We simply don't understand well enough the biophysical limits of (tree) species...?
- Or a combination thereof...?

NB: If we want to do better, we need to do better for 30 / 72 / 20 / 18 species <u>simultaneously</u> (EUR / ENA / PNW / NEC)

Conclusions

- Dynamic models are important tools for assessing possible future trajectories of forest stands
- Succession models are remarkably 'realistic' (e.g., simulations of PNV)
- They have become quite accurate in tracking measured 'long-term' data of forest structure and composition (Growth-And-Yield; Reserves)
- Data-model fusion is highly promising
- Yet, calibration to specific conditions (in time and space) leads to dramatic deterioration of performance when scaling is attempted
- Need to disentangle the various explanations that may underlie the apparent need for scale-dependent parameterizations
- The good news is: we don't run out of work! ©

